Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
J Neurosci ; 44(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37989591

RESUMO

Interaural time differences (ITDs) are a major cue for sound localization and change with increasing head size. Since the barn owl's head width more than doubles in the month after hatching, we hypothesized that the development of their ITD detection circuit might be modified by experience. To test this, we raised owls with unilateral ear inserts that delayed and attenuated the acoustic signal, and then measured the ITD representation in the brainstem nucleus laminaris (NL) when they were adults. The ITD circuit is composed of delay line inputs to coincidence detectors, and we predicted that plastic changes would lead to shorter delays in the axons from the manipulated ear, and complementary shifts in ITD representation on the two sides. In owls that received ear inserts starting around P14, the maps of ITD shifted in the predicted direction, but only on the ipsilateral side, and only in those tonotopic regions that had not experienced auditory stimulation prior to insertion. The contralateral map did not change. Thus, experience-dependent plasticity of the ITD circuit occurs in NL, and our data suggest that ipsilateral and contralateral delays are independently regulated. As a result, altered auditory input during development leads to long-lasting changes in the representation of ITD.Significance Statement The early life of barn owls is marked by increasing sensitivity to sound, and by increasing ITDs. Their prolonged post-hatch development allowed us to examine the role of altered auditory experience in the development of ITD detection circuits. We raised owls with a unilateral ear insert and found that their maps of ITD were altered by experience, but only in those tonotopic regions ipsilateral to the occluded ear that had not experienced auditory stimulation prior to insertion. This experience-induced plasticity allows the sound localization circuits to be customized to individual characteristics, such as the size of the head, and potentially to compensate for imbalanced hearing sensitivities between the left and right ears.


Assuntos
Localização de Som , Estrigiformes , Animais , Localização de Som/fisiologia , Audição , Tronco Encefálico/fisiologia , Estimulação Acústica , Vias Auditivas/fisiologia
2.
Trials ; 24(1): 557, 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37626418

RESUMO

BACKGROUND: Arts therapies are widely but inconsistently provided in community mental health. Whilst they are appealing to patients, evidence for their effectiveness is mixed. Trials to date have been limited to one art-form or diagnosis. Patients may hold strong preferences for or against an art-form whilst group therapies rely on heterogeneity to provide a range of learning experiences. This study will test whether manualised group arts therapies (art therapy, dance movement therapy and music therapy) are effective in reducing psychological distress for diagnostically heterogeneous patients in community mental health compared to active group counselling control. METHODS: A pragmatic multi-centre 2-arm randomised controlled superiority trial with health economic evaluation and nested process evaluation. Adults aged ≥ 18, living in the community with a primary diagnosis of psychosis, mood, or anxiety disorder will be invited to participate and provide written informed consent. Participants are eligible if they score ≥ 1.65 on the Global Severity Index of the Brief Symptom Inventory. Those eligible will view videos of arts therapies and be asked for their preference. Participants are randomised to either their preferred type of group arts therapy or counselling. Groups will run twice per week in a community venue for 20 weeks. Our primary outcome is symptom distress at the end of intervention. Secondary outcomes include observer-rated symptoms, social situation and quality of life. Data will be collected at baseline, post-intervention and 6 and 12 months post-intervention. Outcome assessors and trial statisticians will be blinded. Analysis will be intention-to-treat. Economic evaluation will assess the cost-effectiveness of group arts therapies. A nested process evaluation will consist of treatment fidelity analysis, exploratory analysis of group process measures and qualitative interviews with participants and therapists. DISCUSSION: This will be the first trial to account for patient preferences and diagnostic heterogeneity in group arts therapies. As with all group therapies, there are a number of logistical challenges to which we have had to further adapt due to the COVID-19 pandemic. Overall, the study will provide evidence as to whether there is an additive benefit or not to the use of the arts in group therapy in community mental health care. TRIAL REGISTRATION: ISRCTN, ISRCTN88805048 . Registered on 12 September 2018.


Assuntos
Arteterapia , COVID-19 , Dançaterapia , Serviços de Saúde Mental , Musicoterapia , Adulto , Humanos , Aconselhamento , Estudos Multicêntricos como Assunto , Pandemias , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Adolescente , Ensaios Clínicos Pragmáticos como Assunto , Estudos de Equivalência como Asunto
3.
J Comp Neurol ; 531(12): 1261-1273, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37245999

RESUMO

Despite the absence of tympanic middle ears, snakes can hear. They are thought to primarily detect substrate vibration via connections between the lower jaw and the inner ear. We used the western rat snake (Pantherophis obsoletus) to determine how vibration is processed in the brain. We measured vibration-evoked potential recordings to reveal sensitivity to low-frequency vibrations. We then used tract tracing combined with immunohistochemistry and Nissl staining to describe the central projections of the papillar branch of the VIIIth nerve. Applications of biotinylated dextran amine to the basilar papilla (homologous to the organ of Corti of mammals) labeled bouton-like terminals in two first-order cochlear nuclei, a rostrolateral nucleus angularis (NA) and a caudomedial nucleus magnocellularis (NM). NA formed a distinct dorsal eminence, consisted of heterogenous cell types, and was parvalbumin positive. NM was smaller and poorly separated from the surrounding vestibular nuclei. NM was distinguished by positive calbindin label and included fusiform and round cells. Thus, the atympanate western rat snake shares similar first-order projections to tympanate reptiles. Auditory pathways may be used for detecting vibration, not only in snakes but also potentially in atympanate early tetrapods.


Assuntos
Vias Auditivas , Núcleo Coclear , Animais , Vias Auditivas/fisiologia , Bulbo , Nervo Coclear , Serpentes , Mamíferos
4.
Hear Res ; 433: 108766, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37084504

RESUMO

A rich history of comparative research in the auditory field has afforded a synthetic view of sound information processing by ears and brains. Some organisms have proven to be powerful models for human hearing due to fundamental similarities (e.g., well-matched hearing ranges), while others feature intriguing differences (e.g., atympanic ears) that invite further study. Work across diverse "non-traditional" organisms, from small mammals to avians to amphibians and beyond, continues to propel auditory science forward, netting a variety of biomedical and technological advances along the way. In this brief review, limited primarily to tetrapod vertebrates, we discuss the continued importance of comparative studies in hearing research from the periphery to central nervous system with a focus on outstanding questions such as mechanisms for sound capture, peripheral and central processing of directional/spatial information, and non-canonical auditory processing, including efferent and hormonal effects.


Assuntos
Percepção Auditiva , Audição , Animais , Humanos , Audição/fisiologia , Percepção Auditiva/fisiologia , Orelha/fisiologia , Testes Auditivos , Som , Mamíferos
5.
bioRxiv ; 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36778252

RESUMO

Barn owls experience increasing interaural time differences (ITDs) during development, because their head width more than doubles in the month after hatching. We therefore hypothesized that their ITD detection circuit might be modified by experience. To test this, we raised owls with unilateral ear inserts that delayed and attenuated the acoustic signal, then measured the ITD representation in the brainstem nucleus laminaris (NL) when they were adult. The ITD circuit is composed of delay line inputs to coincidence detectors, and we predicted that plastic changes would lead to shorter delays in the axons from the manipulated ear, and complementary shifts in ITD representation on the two sides. In owls that received ear inserts starting around P14, the maps of ITD shifted in the predicted direction, but only on the ipsilateral side, and only in those tonotopic regions that had not experienced auditory stimulation prior to insertion. The contralateral map did not change. Experience-dependent plasticity of the ITD circuit occurs in NL, and our data suggest that ipsilateral and contralateral delays are independently regulated. Thus, altered auditory input during development leads to long-lasting changes in the representation of ITD.

6.
Brain Behav Evol ; 98(1): 44-60, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36455518

RESUMO

Crocodilians (alligators, crocodiles, and gharials) are the closet living relatives to birds and, as such, represent a key clade to understand the evolution of the avian brain. However, many aspects of crocodilian neurobiology remain unknown. In this paper, we address an important knowledge gap as there are no published studies of cerebellar connections in any crocodilian species. We used injections of retrograde tracers into the cerebellum of the American alligator (Alligator mississippiensis) to describe for the first time the origin of climbing and mossy fiber inputs. We found that inputs to the cerebellum in the American alligator are similar to those of other nonavian reptiles and birds. Retrograde labeled cells were found in the spinal cord, inferior olive, reticular formation, vestibular and cerebellar nuclei, as well as in nucleus ruber and surrounding tegmentum. Additionally, we found no retrogradely labeled cells in the anterior rhombencephalon which suggest that, like other nonavian reptiles, crocodilians may lack pontine nuclei. Similar to birds and other nonavian reptiles, we found inputs to the cerebellum from the pretectal nucleus lentiformis mesencephali. Additionally, we found retrogradely labeled neurons in two nuclei in the pretectum: the nucleus circularis and the interstitial nucleus of the posterior commissure. These pretectal projections have not been described in any other nonavian reptile to date, but they do resemble projections from the nucleus spiriformis medialis of birds. Our results show that many inputs to the cerebellum are highly conserved among sauropsids and that extensive pretectal inputs to the cerebellum are not exclusive to the avian brain. Finally, we suggest that the pontine nuclei of birds are an evolutionary novelty that may have evolved after the last common ancestor between birds and crocodilians, and may represent an intriguing case of convergent evolution with mammals.


Assuntos
Jacarés e Crocodilos , Animais , Cerebelo , Tegmento Mesencefálico , Neurônios , Medula Espinal , Mamíferos
7.
J Exp Biol ; 225(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35724322

RESUMO

The ability to sense and localize sound is so advantageous for survival that it is difficult to understand the almost 100 million year gap separating the appearance of early tetrapods and the emergence of an impedance-matching tympanic middle ear - which we normally regard as a prerequisite for sensitive hearing on land - in their descendants. Recent studies of hearing in extant atympanate vertebrates have provided significant insights into the ancestral state(s) and the early evolution of the terrestrial tetrapod auditory system. These reveal a mechanism for sound pressure detection and directional hearing in 'earless' atympanate vertebrates that may be generalizable to all tetrapods, including the earliest terrestrial species. Here, we review the structure and function of vertebrate tympanic middle ears and highlight the multiple acquisition and loss events that characterize the complex evolutionary history of this important sensory structure. We describe extratympanic pathways for sound transmission to the inner ear and synthesize findings from recent studies to propose a general mechanism for hearing in 'earless' atympanate vertebrates. Finally, we integrate these studies with research on tympanate species that may also rely on extratympanic mechanisms for acoustic reception of infrasound (<20 Hz) and with studies on human bone conduction mechanisms of hearing.


Assuntos
Orelha Média , Audição , Animais , Humanos , Som , Membrana Timpânica
8.
J Neurophysiol ; 125(3): 887-902, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33534648

RESUMO

The configuration of lizard ears, where sound can reach both surfaces of the eardrums, produces a strongly directional ear, but the subsequent processing of sound direction by the auditory pathway is unknown. We report here on directional responses from the first stage, the auditory nerve. We used laser vibrometry to measure eardrum responses in Tokay geckos and in the same animals recorded 117 auditory nerve single fiber responses to free-field sound from radially distributed speakers. Responses from all fibers showed strongly lateralized activity at all frequencies, with an ovoidal directivity that resembled the eardrum directivity. Geckos are vocal and showed pronounced nerve fiber directionality to components of the call. To estimate the accuracy with which a gecko could discriminate between sound sources, we computed the Fisher information (FI) for each neuron. FI was highest just contralateral to the midline, front and back. Thus, the auditory nerve could provide a population code for sound source direction, and geckos should have a high capacity to differentiate between midline sound sources. In brain, binaural comparisons, for example, by IE (ipsilateral excitatory, contralateral inhibitory) neurons, should sharpen the lateralized responses and extend the dynamic range of directionality.NEW & NOTEWORTHY In mammals, the two ears are unconnected pressure receivers, and sound direction is computed from binaural interactions in the brain, but in lizards, the eardrums interact acoustically, producing a strongly directional response. We show strongly lateralized responses from gecko auditory nerve fibers to directional sound stimulation and high Fisher information on either side of the midline. Thus, already the auditory nerve provides a population code for sound source direction in the gecko.


Assuntos
Estimulação Acústica/métodos , Vias Auditivas/fisiologia , Nervo Coclear/fisiologia , Localização de Som/fisiologia , Vibração , Animais , Feminino , Lagartos , Masculino
9.
Front Neurosci ; 15: 761826, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34987357

RESUMO

Information processing in the nervous system critically relies on temporally precise spiking activity. In the auditory system, various degrees of phase-locking can be observed from the auditory nerve to cortical neurons. The classical metric for quantifying phase-locking is the vector strength (VS), which captures the periodicity in neuronal spiking. More recently, another metric, called the correlation index (CI), was proposed to quantify the temporally reproducible response characteristics of a neuron. The CI is defined as the peak value of a normalized shuffled autocorrelogram (SAC). Both VS and CI have been used to investigate how temporal information is processed and propagated along the auditory pathways. While previous analyses of physiological data in cats suggested covariation of these two metrics, general characterization of their connection has never been performed. In the present study, we derive a rigorous relationship between VS and CI. To model phase-locking, we assume Poissonian spike trains with a temporally changing intensity function following a von Mises distribution. We demonstrate that VS and CI are mutually related via the so-called concentration parameter that determines the degree of phase-locking. We confirm that these theoretical results are largely consistent with physiological data recorded in the auditory brainstem of various animals. In addition, we generate artificial phase-locked spike sequences, for which recording and analysis parameters can be systematically manipulated. Our analysis results suggest that mismatches between empirical data and the theoretical prediction can often be explained with deviations from the von Mises distribution, including skewed or multimodal period histograms. Furthermore, temporal relations of spike trains across trials can contribute to higher CI values than predicted mathematically based on the VS. We find that, for most applications, a SAC bin width of 50 ms seems to be a favorable choice, leading to an estimated error below 2.5% for physiologically plausible conditions. Overall, our results provide general relations between the two measures of phase-locking and will aid future analyses of different physiological datasets that are characterized with these metrics.

10.
Brain Behav Evol ; 95(1): 45-55, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32155640

RESUMO

While in birds and mammals the cerebellum is a highly convoluted structure that consists of numerous transverse lobules, in most amphibians and reptiles it consists of only a single unfolded sheet. Orthogonal to the lobules, the cerebellum is comprised of sagittal zones that are revealed in the pattern of afferent inputs, the projection patterns of Purkinje cells, and Purkinje cell response properties, among other features. The expression of several molecular markers, such as aldolase C, is also parasagittally organized. Aldolase C, also known as zebrin II (ZII), is a glycolytic enzyme expressed in the cerebellar Purkinje cells of the vertebrate cerebellum. In birds, mammals, and some lizards (Ctenophoresspp.), ZII is expressed in a heterogenous fashion of alternating sagittal bands of high (ZII+) and low (ZII-) expression Purkinje cells. In contrast, turtles and snakes express ZII homogenously (ZII+) in their cerebella, but the pattern in crocodilians is unknown. Here, we examined the expression of ZII in two crocodilian species (Crocodylus niloticus and Alligator mississippiensis) to help determine the evolutionary origin of striped ZII expression in vertebrates. We expected crocodilians to express ZII in a striped (ZII+/ZII-) manner because of their close phylogenetic relationship to birds and their larger and more folded cerebellum compared to that of snakes and turtles. Contrary to our prediction, all Purkinje cells in the crocodilian cerebellum had a generally homogenous expression of ZII (ZII+) rather than clear ZII+/- stripes. Our results suggest that either ZII stripes were lost in three groups (snakes, turtles, and crocodilians) or ZII stripes evolved independently three times (lizards, birds, and mammals).


Assuntos
Jacarés e Crocodilos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células de Purkinje/enzimologia , Animais
11.
Evolution ; 73(10): 2135-2150, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31436320

RESUMO

Lungless salamanders (Family Plethodontidae) form a highly speciose group that has undergone spectacular adaptive radiation to colonize a multitude of habitats. Substantial morphological variation in the otic region coupled with great ecological diversity within this clade make plethodontids an excellent model for exploring the ecomorphology of the amphibian ear. We examined the influence of habitat, development, and vision on inner ear morphology in 52 plethodontid species. We collected traditional and 3D geometric morphometric measurements to characterize variation in size and shape of the otic endocast and peripheral structures of the salamander ear. Phylogenetic comparative analyses demonstrate structural convergence in the inner ear across ecologically similar species. Species that dwell in spatially complex microhabitats exhibit robust, highly curved semicircular canals suggesting enhanced vestibular sense, whereas species with reduced visual systems demonstrate reduced canal curvature indicative of relaxed selection on the vestibulo-ocular reflex. Cave specialists show parallel enlargement of auditory-associated structures. The morphological correlates of ecology among diverse species reveal underlying evidence of habitat specialization in the inner ear and suggest that there exists physiological variation in the function of the salamander ear even in the apparent absence of selective pressures on the auditory system to support acoustic behavior.


Assuntos
Orelha Interna/anatomia & histologia , Ecologia , Urodelos/anatomia & histologia , Visão Ocular , Animais , Evolução Biológica , Tamanho Corporal , Filogenia , Urodelos/classificação , Urodelos/fisiologia
12.
J Neurosci ; 39(20): 3882-3896, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30886018

RESUMO

Detection of interaural time differences (ITDs) is crucial for sound localization in most vertebrates. The current view is that optimal computational strategies of ITD detection depend mainly on head size and available frequencies, although evolutionary history should also be taken into consideration. In archosaurs, which include birds and crocodiles, the brainstem nucleus laminaris (NL) developed into the critical structure for ITD detection. In birds, ITDs are mapped in an orderly array or place code, whereas in the mammalian medial superior olive, the analog of NL, maps are not found. As yet, in crocodilians, topographical representations have not been identified. However, nontopographic representations of ITD cannot be excluded due to different anatomical and ethological features of birds and crocodiles. Therefore, we measured ITD-dependent responses in the NL of anesthetized American alligators of either sex and identified the location of the recording sites by lesions made after recording. The measured extracellular field potentials, or neurophonics, were strongly ITD tuned, and their preferred ITDs correlated with the position in NL. As in birds, delay lines, which compensate for external time differences, formed maps of ITD. The broad distributions of best ITDs within narrow frequency bands were not consistent with an optimal coding model. We conclude that the available acoustic cues and the architecture of the acoustic system in early archosaurs led to a stable and similar organization in today's birds and crocodiles, although physical features, such as internally coupled ears, head size, or shape, and audible frequency range, vary among the two groups.SIGNIFICANCE STATEMENT Interaural time difference (ITD) is an important cue for sound localization, and the optimal strategies for encoding ITD in neuronal populations are the subject of ongoing debate. We show that alligators form maps of ITD very similar to birds, suggesting that their common archosaur ancestor reached a stable coding solution different from mammals. Mammals and diapsids evolved tympanic hearing independently, and local optima can be reached in evolution that are not considered by global optimal coding models. Thus, the presence of ITD maps in the brainstem may reflect a local optimum in evolutionary development. Our results underline the importance of comparative animal studies and show that optimal models must be viewed in the light of evolutionary processes.


Assuntos
Jacarés e Crocodilos/fisiologia , Tronco Encefálico/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico , Neurônios/fisiologia , Localização de Som/fisiologia , Estimulação Acústica , Animais , Evolução Biológica , Feminino , Masculino , Modelos Neurológicos , Fatores de Tempo
13.
J Neurophysiol ; 121(3): 1034-1047, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30575430

RESUMO

Synaptic currents are frequently assumed to make a major contribution to the extracellular field potential (EFP). However, in any neuronal population, the explicit separation of synaptic sources from other contributions such as postsynaptic spikes remains a challenge. Here we take advantage of the simple organization of the barn owl nucleus laminaris (NL) in the auditory brain stem to isolate synaptic currents through the iontophoretic application of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-receptor antagonist 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[ f]quinoxaline-7-sulfonamide (NBQX). Responses to auditory stimulation show that the temporal dynamics of the evoked synaptic contributions to the EFP are consistent with synaptic short-term depression (STD). The estimated time constants of an STD model fitted to the data are similar to the fast time constants reported from in vitro experiments in the chick. Overall, the putative synaptic EFPs in the barn owl NL are significant but small (<1% change of the variance by NBQX). This result supports the hypothesis that the EFP in NL is generated mainly by axonal spikes, in contrast to most other neuronal systems. NEW & NOTEWORTHY Synaptic currents are assumed to make a major contribution to the extracellular field potential in the brain, but it is hard to directly isolate these synaptic components. Here we take advantage of the simple organization of the barn owl nucleus laminaris in the auditory brain stem to isolate synaptic currents through the iontophoretic application of a synaptic blocker. We show that the responses are consistent with a simple model of short-term synaptic depression.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiologia , Potenciais Sinápticos , Animais , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Potenciais Evocados Auditivos do Tronco Encefálico , Antagonistas de Aminoácidos Excitatórios/farmacologia , Quinoxalinas/farmacologia , Estrigiformes
14.
J Neurophysiol ; 119(4): 1422-1436, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29357463

RESUMO

Extracellular field potentials (EFP) are widely used to evaluate in vivo neural activity, but identification of multiple sources and their relative contributions is often ambiguous, making the interpretation of the EFP difficult. We have therefore analyzed a model EFP from a simple brainstem circuit with separable pre- and postsynaptic components to determine whether we could isolate its sources. Our previous papers had shown that the barn owl neurophonic largely originates with spikes from input axons and synapses that terminate on the neurons in the nucleus laminaris (NL) (Kuokkanen PT, Wagner H, Ashida G, Carr CE, Kempter R. J Neurophysiol 104: 2274-2290, 2010; Kuokkanen PT, Ashida G, Carr CE, Wagner H, Kempter R. J Neurophysiol 110: 117-130, 2013; McColgan T, Liu J, Kuokkanen PT, Carr CE, Wagner H, Kempter R. eLife 6: e26106, 2017). To determine how much the postsynaptic NL neurons contributed to the neurophonic, we recorded EFP responses in NL in vivo. Power spectral analyses showed that a small spectral component of the evoked response, between 200 and 700 Hz, could be attributed to the NL neurons' spikes, while nucleus magnocellularis (NM) spikes dominate the EFP at frequencies ≳1 kHz. Thus, spikes of NL neurons and NM axons contribute to the EFP in NL in distinct frequency bands. We conclude that if the spectral components of source types are different and if their activities can be selectively modulated, the identification of EFP sources is possible. NEW & NOTEWORTHY Extracellular field potentials (EFPs) generate clinically important signals, but their sources are incompletely understood. As a model, we have analyzed the auditory neurophonic in the barn owl's nucleus laminaris. There the EFP originates predominantly from spiking in the afferent axons, with spectral power ≳1 kHz, while postsynaptic laminaris neurons contribute little. In conclusion, the identification of EFP sources is possible if they have different spectral components and if their activities can be modulated selectively.


Assuntos
Potenciais de Ação/fisiologia , Percepção Auditiva/fisiologia , Tronco Encefálico/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Neurônios/fisiologia , Estrigiformes/fisiologia , Animais , Axônios/fisiologia , Núcleo Coclear/fisiologia , Eletroencefalografia , Feminino , Masculino
15.
Acta Acust United Acust ; 104(5): 874-877, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30976274

RESUMO

The auditory brainstem response (ABR) is generated in the auditory brainstem by local current sources, which also give rise to extracellular field potentials (EFPs). The origins of both the ABR and the EFP are not well understood. We have recently found that EFPs, especially their dipole behavior, may be dominated by the branching patterns and the activity of axonal terminal zones [1]. To test the hypothesis that axons also shape the ABR, we used the well-described barn owl early auditory system. We recorded the ABR and a series of EFPs between the brain surface and nucleus laminaris (NL) in response to binaural clicks. The ABR and the EFP within and around NL are correlated. Together, our data suggest that axonal dipoles within the barn owl nucleus laminaris contribute to the ABR wave III.

16.
Brain Behav Evol ; 90(2): 131-153, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28988244

RESUMO

The earliest vertebrate ears likely subserved a gravistatic function for orientation in the aquatic environment. However, in addition to detecting acceleration created by the animal's own movements, the otolithic end organs that detect linear acceleration would have responded to particle movement created by external sources. The potential to identify and localize these external sources may have been a major selection force in the evolution of the early vertebrate ear and in the processing of sound in the central nervous system. The intrinsic physiological polarization of sensory hair cells on the otolith organs confers sensitivity to the direction of stimulation, including the direction of particle motion at auditory frequencies. In extant fishes, afferents from otolithic end organs encode the axis of particle motion, which is conveyed to the dorsal regions of first-order octaval nuclei. This directional information is further enhanced by bilateral computations in the medulla and the auditory midbrain. We propose that similar direction-sensitive neurons were present in the early aquatic tetrapods and that selection for sound localization in air acted upon preexisting brain stem circuits like those in fishes. With movement onto land, the early tetrapods may have retained some sensitivity to particle motion, transduced by bone conduction, and later acquired new auditory papillae and tympanic hearing. Tympanic hearing arose in parallel within each of the major tetrapod lineages and would have led to increased sensitivity to a broader frequency range and to modification of the preexisting circuitry for sound source localization.


Assuntos
Evolução Biológica , Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Localização de Som/fisiologia , Animais , Vias Auditivas/citologia , Vias Auditivas/fisiologia , Aves/anatomia & histologia , Aves/fisiologia , Orelha/anatomia & histologia , Orelha/fisiologia , Peixes/anatomia & histologia , Peixes/fisiologia , Répteis/anatomia & histologia , Répteis/fisiologia
17.
J Exp Biol ; 220(Pt 22): 4270-4281, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28947499

RESUMO

The physiological hearing range of turtles is approximately 50-1000 Hz, as determined by cochlear microphonics ( Wever and Vernon, 1956a). These low frequencies can constrain sound localization, particularly in red-eared slider turtles, which are freshwater turtles with small heads and isolated middle ears. To determine if these turtles were sensitive to interaural time differences (ITDs), we investigated the connections and physiology of their auditory brainstem nuclei. Tract tracing experiments showed that cranial nerve VIII bifurcated to terminate in the first-order nucleus magnocellularis (NM) and nucleus angularis (NA), and the NM projected bilaterally to the nucleus laminaris (NL). As the NL received inputs from each side, we developed an isolated head preparation to examine responses to binaural auditory stimulation. Magnocellularis and laminaris units responded to frequencies from 100 to 600 Hz, and phase-locked reliably to the auditory stimulus. Responses from the NL were binaural, and sensitive to ITD. Measures of characteristic delay revealed best ITDs around ±200 µs, and NL neurons typically had characteristic phases close to 0, consistent with binaural excitation. Thus, turtles encode ITDs within their physiological range, and their auditory brainstem nuclei have similar connections and cell types to other reptiles.


Assuntos
Tronco Encefálico/fisiologia , Neurônios/fisiologia , Localização de Som/fisiologia , Tartarugas/fisiologia , Estimulação Acústica , Animais , Feminino , Masculino
18.
Artigo em Inglês | MEDLINE | ID: mdl-28689296

RESUMO

Adult barn owl hearing is acute, but development of this sense is not well understood. We, therefore, measured auditory brainstem responses in barn owls from before the onset of hearing (posthatch day 2, or P2) to adulthood (P69). The first consistent responses were detected at P4 for 1 and 2 kHz, followed by responses to 0.5 and 4 kHz at P9, and 5 kHz at P13. Sensitivity to higher frequencies increased with age, with responses to 12 kHz appearing about 2 months after hatching, once the facial ruff was mature. Therefore, these altricial birds achieve their sensitivity to sound during a prolonged period of development, which coincides with maturation of the skull and facial ruff (Haresign and Moiseff in Auk 105:699-705, 1988).


Assuntos
Tronco Encefálico/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Localização de Som/fisiologia , Estrigiformes/fisiologia , Estimulação Acústica , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Vias Auditivas/fisiologia , Limiar Auditivo/fisiologia , Audição/fisiologia , Psicoacústica , Fatores de Tempo
19.
J Exp Biol ; 219(Pt 24): 3829-3831, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27974531
20.
Biol Cybern ; 110(4-5): 237-246, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27838890

RESUMO

ICE stands for internally coupled ears. More than half of the terrestrial vertebrates, such as frogs, lizards, and birds, as well as many insects, are equipped with ICE that utilize an air-filled cavity connecting the two eardrums. Its effect is pronounced and twofold. On the basis of a solid experimental and mathematical foundation, it is known that there is a low-frequency regime where the internal time difference (iTD) as perceived by the animal may well be 2-5 times higher than the external ITD, the interaural time difference, and that there is a frequency plateau over which the fraction iTD/ITD is constant. There is also a high-frequency regime where the internal level (amplitude) difference iLD as perceived by the animal is much higher than the interaural level difference ILD measured externally between the two ears. The fundamental tympanic frequency segregates the two regimes. The present special issue devoted to "internally coupled ears" provides an overview of many aspects of ICE, be they acoustic, anatomical, auditory, mathematical, or neurobiological. A focus is on the hotly debated topic of what aspects of ICE animals actually exploit neuronally to localize a sound source.


Assuntos
Orelha/anatomia & histologia , Orelha/fisiologia , Audição/fisiologia , Acústica , Animais , Localização de Som , Membrana Timpânica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...